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The chemical bond in the N2 molecule is analyzed from the perspective of the quantum mechanical interference
effect by means of the recently developed generalized product function energy partitioning (GPF-EP) scheme.
The analysis is carried out at the GVB-PP and SC levels, which constitute interpretable independent particle
models, while ensuring the correct dissociation behavior for the molecule. The results suggest that some
current ideas concerning the bond in the N2 molecule should be revised. It is shown that, in the absence of
the interference effect, there is no chemical bond in the N2 molecule. The influence of the basis set on the
energy partitioning is also evaluated. The interference contributions to the energy are substantially less sensitive
to the choice of the basis set than the reference energy, making the investigation of the relative importance
of inteference effects in larger systems feasible.

Introduction

The nature of chemical bonding in the nitrogen molecule has
been the subject of much investigation and speculation.1-7 A
particularly widespread view is that the bond in the nitrogen
molecule, which is homopolar in character, possesses an
important electrostatic contribution to the stabilization of the
molecule.2-6

On the other hand, it has been established, for quite some
time now, that the formation of chemical bonds is associated
in some extent with the quantum-mechanical interference
effect.2,4,5,8-14 The first general approach for calculating the
interference and quasi-classical energy contributions of a given
system, involving the decomposition of its reduced density
matrices (RDMs) in interference and quasi-classical parts, was
formulated by Ruedenberg.8 To obtain such a partition, it was
necessary to choose, by some criteria, a set of atomic orbitals
among which the interference effect was to be evaluated, and
possible ways to obtain such sets were proposed by the same
author and co-workers.15-19 Nevertheless, due to the arbitrariness
involved in the choice of atomic orbitals, this approach was
applied to only a few molecules.

We have recently developed a generalized product function
energy partitioning (GPF-EP) approach which eliminates this
arbitrariness while allowing the interference energy arising from
different bonds to be separately calculated.20 This approach is
based on McWeeny’s GPFs, whose RDMs are neatly blocked
in electron group parts,21 leading naturally to a partition in terms
of individual bonds. By choosing modern valence bond wave
functions (such as GVB22 or SC23) for the description of the
different electron groups, interpretable and uniquely defined
(within a given basis set) atomic-like orbitals are automatically
generated by self-consistent optimization, eliminating the need
to arbitrarily partition the wave function in atomic orbitals.11,20

Approaches closely related to GPFs have also been used in a
different context for the investigation of the chemical bond.24-26

In this work, we apply the GPF-EP to the nitrogen molecule
to determine the role that quantum mechanical interference plays
in the formation of its chemical bond. It is shown that, as for
the hydrogen molecule, the bonding in N2 originates from the
lowering in the kinetic energy associated with the change in
the molecular electronic density which, in turn, arises from the
interference effect among bonding orbitals. In the scope of the
σ-π separability approximation,27,28 the relative importance of
σ and π bonding in nitrogen is evaluated. The role of the
nonbonding orbitals is also discussed. In addition, the influence
of the basis set on the results of the energy partitioning is
examined and discussed.

For the sake of comprehensiveness, a brief discussion of the
GPF-EP method follows. A more thorough presentation can be
found elsewhere.20

Generalized Product Function Energy Partitioning

A GPF is a special kind of approximate wave function
exhibiting the general form

where the superindexes (1), (2), ... refer to groups of N(1),
N(2), ... electrons each, and Ψ(1), Ψ(2), ... are their respective
wave functions, defined in spatial and spin coordinates. The
wave function of each µth group will be taken as a normalized,
antisymmetrized product of Nµ orbitals. Â is the antisymme-
trizing operator containing all intergroup permutations involving,
at most, one coordinate index from each group. Orbitals
pertaining to different groups are restricted to be mutually
orthogonal.

The first- and second-order spinless RDMs for this kind of
wave function can be expressed in a simple manner in terms of
the spinless RDMs for the constituting electron groups:21
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where F and π denote, respectively, the first- and second-order
RDMs for the whole system, Fµ and πµ refer to the correspond-
ing RDMs for each of the η individual electron groups, and ri

stands for the spatial coordinate of the ith electron.
The total electronic energy is, thus, determined by the RDM

of all electron groups and the relative nuclear positions:

where ĥ is the one-electron operator, including the kinetic energy
and the electron-nuclei potential energy operators and r12 is
the interelectronic distance. ZA is the nuclear charge of atom
A, and rAB is the distance between the nuclei of atoms A and
B. It is noteworthy that the electronic energy for such a wave
function is separable in a sum of intragroup energies (first
bracket, eq 3) and intergroup contributions similar in character
to Coulomb and exchange energies (second and third brackets,
respectively).

We have recently shown that by choosing GVB or SC wave
functions as the group wave functions and by expressing the
RDMs of the GPF in terms of the optimized orbitals, it is
possible to partition the energy in a manner similar to that
proposed by Ruedenberg, obtaining

where E[ref] is the total contribution to the energy associated
with the quasiclassical (interference-free) group densities and
pair-densities; E[I] and E[II] are the first- and second-order
interference contributions to the energy, respectively; and E[x]
is the energy contribution due to the antisymmetrization of
electron indexes pertaining to different groups. In the GPF-EP
scheme, each of these contributions is readily separable into
intragroup and intergroup contributions:

When applicable, the above quantities can also be divided into
their kinetic energy and potential energy contributions. As
mentioned earlier, a thorough discussion of the equations can
be found in ref 20.

It is sometimes convenient to describe one of the electron
groups at a different level of calculation, which does not
automatically generate atomic-like orbitals. This is usually the
case when a group, such as the core electrons, are presumed to
bear little to no influence on bonding, contributing only to E[ref]
and E[x]. In this case, the group can be reasonably described,
to a degree of approximation, by a restricted Hartree-Fock
(RHF) wave function, and the remaining electron groups can
be described at the GVB-PP or SC levels with no loss of
interpretability.

Computational Details

The 14 electrons of the nitrogen molecule were separated
into four groups: the first group, with eight electrons, consisting
of core and nonbonding electrons, and three other groups, with
two electrons each, describing the chemical bonds. A RHF wave
function was chosen for the first group, and the three other
groups were described at the GVB/SC level. To preserve the
σ-π separability, Jacobi rotations of the π-bond orbitals with
orbitals from all other groups were not allowed. Henceforth,
this choice of groups will be referred to as scheme I.

To determine the influence of the basis set on the results of
the energy partitioning, calculations were performed with
Pople’s double- and triple-� basis sets 6-31G and 6-311G, with
or without polarization and diffuse functions,29-32 and Dunning’s
cc-pVTZ and cc-pVQZ basis sets.33

To investigate the role of the nonbonding orbitals, a different
group selection was made, separating the electrons into five
different groups: one group, with the four core electrons
described at the RHF level; another group with the four
nonbonding electrons, using a SC(4) wave function; and three
GVB bond groups, with two electrons each. This choice of
groups will be called scheme II. The calculations for scheme II
were carried out only at the cc-pVQZ level.

All wave functions were constructed and optimized with the
VB2000/GAMESS package.34,35 A stand-alone code was devised
to obtain the GPF-EP.36

Results and Discussion

In what follows, the results obtained for scheme I at the cc-
PVQZ level are discussed. These results will be later used as
reference for the basis set analysis. All potential energy surfaces
(PESs) and the corresponding energy partitioning curves were
constructed using 100 points in intervals of 0.04 Å. One should
note that, in all cases, electrons from different groups are not
allowed to change their spin coupling along the PES. This, of
course, results in a dissociation energy slightly higher than would
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be expected. One can always consider this energy difference as
a promotion energy and proceed with the analysis, assuming
the atoms to be in a valence state throughout.

Figure 1 shows the energy partitioning in terms of the
reference, intergroup exchange, and interference contributions.
To make the comparison easier, all curves are adjusted so that
the corresponding quantities meet at the dissociated limit.
Contrary to the reference and intergroup exchange energy,
interference contributions really vanish at greater internuclear
distances.

Among the quantities considered in scheme I, the first-order
interference energy E[I] is the only one contributing to the
formation of the chemical bond. The second-order interference
contribution E[II] is very small through the whole PES (∼5-0
millihartree). The intergroup exchange energy E[x] is repulsive
at the internuclear equilibrium distance. Although the reference
energy E[ref] possesses a local minimum at the equilibrium
distance, it is higher at the minimum than at the dissociation
limit. It should be emphasized that the quantity E[ref] + E[x]
would correspond to the energy of the N2 molecule described
by a quasi-classical density derived from a wave function with
the correct permutational symmetry. It is seen that this quasi-
classical description is completely unable to predict a chemical
bond in the N2 molecule and that interference is solely
responsible for its formation. This seems to contradict some of
the conclusions drawn by other authors concerning the nature
of the bond in N2, more specifically, the attribution of an
important role to the electrostatic interaction between the
atoms.4-6 Differences should be expected, in part because the
Morokuma-type partitioning schemes used by those authors do
notseparate theinterferenceenergyfromtheothercontributions.37,38

One should also be careful when making such comparisons,
since the electrostatic description is not identical to a quasi-
classical one. We do not mean by this that current theoretical
estimations of the electrostatic contributions are wrong, only
that these are, in practice, counteracted by the change in other
energy components in this quasi-classical description. It will
be seen that our analysis allows one to better understand the
origin and relevance of the quasi-classical contributions in the
nitrogen molecule.

The interference energy, E[I], can be further partitioned into
its kinetic and potential energy contributions, as shown in Figure
2. It is clear from the figure that the kinetic energy part of the

interference energy, T[I], is responsible for the energy lowering,
which results in the formation of the potential well. On the other
hand, the interference effect results in a potential energy rise.

The potential interference energy V[I] can be also partitioned
into electron-nucleus and electron-electron contributions
(Ven[I] and Vee[I], respectively) and, as shown in Figure 3, Ven[I]
increases and Vee[I] decreases as the atoms approach each other.
This agrees with the fact that the interference among orbitals
from different centers whose electrons are singlet-coupled tends
to remove electron density from regions near the nuclei toward
the bond region. These results show that the mechanism for
chemical bonding in the nitrogen molecule is completely
analogous to that in the hydrogen molecule;8 that is, the bond
results from the lowering of the kinetic energy due to the
electron density change that ensues from the quantum mechan-
ical interference effect. The interference analysis, of course, in
no way contradicts the virial relation, which predicts that the
total potential energy lowers while the total kinetic energy rises
as atoms approach to form molecules. The interference kinetic
energy quantifies the softening of the kinetic energy pressure
through electron coupling. The kinetic energy lowering through
interference is an essential contributor in the context of the
energy minimization that will establish the virial theorem, which
is, in fact, valid to five significant figures in the present
calculation. This particular role of the interference kinetic energy

Figure 1. Partitioning of the total energy of N2, E[tot], into reference
energy E[ref], interference energy E[I], second-order interference energy
E[II], and intergroup exchange energy E[x].

Figure 2. Partitioning of the interference energy E[I], into interference
kinetic energy, T[I], and interference potential energy, V[I].

Figure 3. Partitioning of the interference potential energy V[I] into
its electron-nucleus and electron-electron contributions (Ven[I] and
Vee[I], respectively).
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in bond formation has been exhaustively discussed in the
literature4,8-14,39 and will not be further examined.

As previously discussed, the same analysis can be carried
out for the individual chemical bonds by means of the GPF-
EP. Figure 4 shows the interference energy in a σ bond and in
a π bond of the molecule.

Both σ and π bonds contribute significantly to the interference
energy, the contribution of the σ bond being larger by ∼80
millihartrees, in comparison to that of a single π bond at the
internuclear equilibrium distance. Should one proceed by further
partitioning the interference energy arising from each bond in
its kinetic and potential energy contributions, it becomes clear
that there is no significant difference in the qualitative picture
that emerges. In each bond, interference brings about a kinetic
energy lowering and a potential energy rise, as can be seen in
Figure 5a and b. The one significant difference that emerges is
that the minima for the interference kinetic energy appear at
different internuclear distances for the σ and π bonds. T[I]-pi

has a minimum at an internuclear distance of ∼1.18 Å, close
to the PES minimum, whereas T[I]-sigma shows a minimum at
1.34 Å. This furnishes a simple explanation for the known fact
that multiple bonds are usually shorter than single bonds, if one
observes that the largest contribution to the interference energy,
and thus, to the potential well, comes from the kinetic energy
of interference. In addition, this result mirrors the qualitative
picture of the bond-breaking, where the π bonds are broken
before the σ bond as the atoms separate, which can be derived
either from inspection of the GVB orbitals involved or from
more complicated types of analyses.7

The reference energy is composed of many different contri-
butions, which vary greatly along the PES and combine to yield
the curve E[ref] shown in Figure 1. Nevertheless, some
interesting features of the components of the reference energy
reveal important characteristics of the variational process of
orbital optimization that eventually leads to the restoration of
the virial relation between kinetic and potential energy.8,10,39 This
data is better discussed by considering the difference (∆value)
between the value that a given component presents at the
minimum of the PES and at the separated atom limit.

The small positive value for ∆E[ref] (∼0.020 hartree) results
from the sum of ∆V[ref] and ∆T[ref], quantities that are almost
2 orders of magnitude larger (-1.312 and 1.331 hartree,
respectively). This implies that the value of ∆E[ref] is a result
of the mutual cancellation of the many terms that together

compose each of ∆V[ref] and ∆T[ref]. It must be emphasized
that both quantities should be taken into consideration when
constructing a quasi-classical reference, which should not be
mistaken for an electrostatic model. An electrostatic model
disregards the change in the electronic density as the atoms
approach and, thus, does not include the quasi-classical kinetic
energy change, whereas a quasi-classical model, which includes
this density modification, excludes only, and specifically, the
density change due to the interference effect.

Partitioning of the reference potential energy difference,
∆V[ref] in intragroup and intergroup contributions does not
reveal any particularly interesting features. All intragroup
contributions have large modules and negative signs, meaning
that, in all cases, the potential energy resulting from the
interaction of the quasi-classical group charge with the nuclei
surpasses by far the intragroup electron-electron repulsion.
Tables containing this information are provided as Supporting
Information.

A revealing feature of the reference energy partitioning is
the contribution from each electron group to the behavior of
the reference (i.e., quasi-classical) kinetic energy, T[ref], which
is shown in Table 1. More to the point, the sole contribution
from the “bond” groups to the steep rise of the reference kinetic
energy as the atoms approach comes from the σ bond electrons.
The π electron group contributes by reducing the reference

Figure 4. Partitioning of the interference energy E[I] into the σ and
π bond contributions (E[I]-sigma and E[I]-pi, respectively).

Figure 5. Partitioning of the interference energy contributions of each
bond. (a) Partitioning of E[I]sigma, into T[I]-sigma and V[I]-sigma. (b)
Partitioning of E[I]-pi, into T[I]-pi and V[I]-pi.
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kinetic energy as the atoms approach the equilibrium inter-
nuclear distance. In the same way, the electrons that do not
participate directly in bonding (i.e., the core and nonbonding
electrons in the HF group) contribute, as a whole, to diminish
the reference kinetic energy. It will be seen later that core and
nonbonding electrons actually play different roles in the
reference kinetic energy.

Two mechanisms could be invoked to explain this particular
role of σ electrons. The first one is related to the contraction of
the electron density from the bonding atomic (or quasi-atomic)
orbitals, which would be variationally achieved by an increase
in the contribution of less diffuse basis functions. A similar idea
was first proposed by Ruedenberg to explain the quasi-classical
kinetic energy rise in the formation of the bond in H2 and H2

+.8
It has been argued that bonding in those two species is unique
and that this mechanism would not be able to explain the kinetic
energy rise in the nitrogen molecule.40 An alternative explanation
for this result has to do with the fact that the nearly pure pz-
type orbitals of the isolated atoms start to acquire some s
character as the atoms approach to form the σ bond. Given basis
functions of similar exponents, the kinetic energy contribution
of s-type orbitals are generally larger than that of p-type orbitals,
which could explain the net kinetic energy rise. A rigorous
analysis of the composition of the orbitals in terms of basis
functions would surely help in solving this question.

The result of the energy partitioning applied to scheme II
(Table 2), shows significant changes for ∆E[I], ∆E[ref], and
∆E[x], which, however, do not contradict the qualitative picture
obtained in the previous analysis, as will be subsequently seen.
The reference energy drops significantly at the equilibrium
distance, which is accompanied by a sharp rise in the intergroup
exchange energy. The difference between the interference energy
change ∆E[I] calculated at the two different schemes presents
a more modest, though significant, modification.

This lowering of ∆E[I] is easily explained if one looks at
Table 3, which compares the interference energy contributions
calculated for both schemes. In the following, ∆E[I]-nb stands
for the change in the interference energy for the group of the
nonbonding electrons. It is seen that the modification that ∆E[I]

undergoes with the change in description comes almost exclu-
sively from the inclusion of ∆E[I]-nb, which accounts for
∼96.5% of it. When considering exclusively the σ and π bond
groups, scheme II yields an ∆E[I] only 2 millihartree lower than
that obtained for scheme I. Thus, the previous interpretation of
the role of the interference energy is preserved.

The sharp rise in the intergroup exchange energy, which was
absent in the scheme I calculations, is in great part a conse-
quence of separating the core and nonbonding electrons into
two different groups. When this is done, it becomes possible to
isolate the exchange terms involving the two different orbital
types. ∆E[x]-core/nb accounts for ∼80% of the change in ∆E[x].

The difference of ∼378 millihartree for ∆E[ref] calculated
at the two distinct schemes originates in the ∆E[ref]-sigma term,
which is lower by almost 580 millihartree in scheme II than in
scheme I. Many other reference contributions oppose this
lowering, the most important by far being the total contribution
of the core and nonbonding electrons to the reference energy,
∆E[ref]-(core+nb), which is ∼363 millihartree higher in scheme
II than in scheme I.

As was seen before in the partitioning carried out for scheme
I, the total, quasi-classical, kinetic energy change for the core
and nonbonding orbitals (∆T[ref]-(core+nb)) was negative, valued
at -439 millihartree. In scheme II, this increases to -454.7
millihartree and can be separated in each individual contribution.
If this is done, one obtains ∆T[ref]-core ) +4199.0 millihartree
and ∆T[ref]-nb ) -4653.7 millihartree. The change in the
reference kinetic energy for the nonbonding orbitals is especially
interesting, because it can be explained by the same mechanism
proposed for understanding the kinetic energy rise in the σ bond
in N2: the nonbonding orbitals possess a predominant s character
at the separated atom limit, and the σ bond orbitals are,
practically, pz orbitals. As the atoms approach, the σ bond
orbitals acquire more s character (thus raising the reference
kinetic energy), to which the nonbonding orbitals respond by
acquiring greater pz character, which lowers the reference kinetic
energy. The increasing contribution of more diffuse functions
might also play a role here.

The role of the nonbonding electrons in the formation of the
chemical bond is, thus, made explicit in the preceding analysis.
As the nonbonding orbitals are given sufficient variational
freedom (by describing them with a SC wave function,
effectively removing the double occupancy restriction), the σ
orbitals are allowed to better adjust, leading to the significant
decrease verified for ∆E[ref]-sigma. This energetic gain is,
however, clearly tied to the changes undergone by the non-
bonding orbitals and to the nonbonding/core separation. These
changes appear more pointedly in the core/nonbonding exchange
∆E[x]-core/nb and in the total core and nonbonding reference
energy ∆E[ref]-(core+nb), both of which are destabilizing in nature.
These counteract almost completely the stabilizing contributions
that are exclusive to scheme II, and as a result, the modification
in the PES well depth with the change in description is of only
9.5 millihartree.

As noted before, the correct quasi-classical (i.e., without
interference) description of a system must still include all the
symmetries of the problem, and the quantity that best fulfills
this requisite is ∆E[ref] + ∆E[x], valued at ∼+112 millihartree.
Thus, no matter the description chosen, the role and relative
importance of the interference energy remains the same; that
is, providing the kinetic energy drop that leads to the formation
of the chemical bond.

We proceed now to investigate the influence of the basis set
on the results of the energy partitioning. The results shown in

TABLE 1: Partitioning of the Reference Kinetic Energy for
the N2 Molecule

energy (hartree)

∆T[ref], (core + nb) -0.4390
∆T[ref], sigma 1.7887
∆T[ref], pi -0.0091
∆T[ref] 1.3315

TABLE 2: Comparison of the Energy Partitioning for the
Two Ways of Grouping the Electrons of the N2 Molecule

scheme I scheme II sch.II - sch.I

∆E[I] -0.4293 -0.4979 -0.0685
∆E[II] 0.0058 0.0047 -0.0011
∆E[ref] 0.0197 -0.3585 -0.3782
∆E[x] 0.0325 0.4708 0.4384
∆E[tot] -0.3714 -0.3809 -0.0095

TABLE 3: Comparison of the Interference Energy
Partitioning for the Two Ways of Grouping the Electrons of
the N2 Molecule

scheme I scheme II sch.II-sch.I

∆E[I], nb -0.0661
∆E[I], sigma -0.1975 -0.2003 -0.0028
∆E[I], pi -0.1159 -0.1157 0.0002
∆E[I], sigma + 2-pi -0.4293 -0.4317 -0.0024
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Figures 6-9, for the different terms of the energy partitioning,
represent the difference between the value of a given term at
the equilibrium distance and that of the same term at the
separated atom limit and are always expressed relative to the
values obtained with the cc-pVQZ basis set.

It is clearly seen in Figure 6 that the presence of polarization
functions in the basis is of utmost importance, whereas diffuse
functions do not seem to play any important role. Both the
intergroup exchange and reference contributions are particularly
sensitive to the absence of polarization functions in the basis
set. The reference energy difference, ∆E[ref], calculated without
polarization functions (e.g., 6-31G) is more than 100 millihar-
trees greater than that obtained with the smallest basis set
containing polarization functions(6-31G*). This is partly coun-
teracted by the opposite trend in the intergroup exchange energy,
for which the results obtained with no polarization functions
are at least 70 millihartrees smaller than those calculated
otherwise. In contrast, the interference contribution is consider-
ably less sensitive to the absence of polarization functions, the
calculated value being ∼16 millihartree larger than that contain-
ing polarization functions.

The use of Dunning’s correlation consistent basis sets also
improves the values obtained for the energy partitioning. Once
again, the interference energy is less affected, with a difference
of merely 5 millihartree between the 6-311G* and cc-pVTZ
basis, whereas the reference energy and the intergroup exchange
energy present differences of about 14 and 12 millihartree,
respectively. It is seen that the choice of double, triple, or
quadruple-� basis sets is less significant for all quantities.

Figure 7 shows the effect of the basis sets on the calculated
interference energies for each individual bond. The interference
energy calculated for the σ bond is clearly more affected by
use of a poor basis set than that obtained for the π bond. Once
again, polarization functions play a crucial role in the correct
calculation of the energy components. Generally, the results
show that poor basis sets lead to underestimated interference
energies.

From all the contributions to the reference energy, the
intragroup contributions are the most affected by the absence
of polarization functions, as can be seen in Figure 8. For
example, the results with the 6-31G and 6-31G* basis sets for
the ∆E[ref]-sigma differ by ∼800 millihartree. The difference
between ∆E[ref]-pi calculated with the 6-31G basis set and the

cc-pVQZ basis set (about 390 millihartree) is in great part
recouped by the simple addition of polarization functions, the
difference between the calculations with 6-31G* and cc-pVQZ
basis reducing to ∼28 millihartree. For ∆E[ref]-sigma, on the
other hand, the presence of polarization functions reduces this
difference to 141 millihartree, still too large by any criteria.
Partitioning of ∆E[ref] is, thus, clearly dependent on the size
and type of the basis set. The use of the triple-� 6-311G*
improves this partially, but only by using correlation consistent
basis sets do the results begin to approach a limit, the greatest
difference between cc-pVTZ and cc-PVQZ coming from
∆E[ref]-HF (a difference of approximately 11 millihartree).

The addition of diffuse functions to the basis set seems to
improve somewhat the results obtained, though not by much.
Whether this improvement is a consequence of the diffuse
functions compensating for the lack of polarization functions

Figure 6. Influence of the basis set on the GPF-EP energy partitioning.
All values are relative to the respective calculation with the cc-pVQZ
basis set.

Figure 7. Influence of the basis set on the GPF-EP partitioning of the
interference energy E[I]. All values are relative to the respective
calculation with the cc-pVQZ basis set.

Figure 8. Influence of the basis set on the GPF-EP partitioning of the
reference energy E[ref]. All values are relative to the respective
calculation with the cc-pVQZ basis set.
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or for the relatively small basis set size can only be determined
by a more thorough study.

As in other cases, polarization functions are essential to obtain
meaningful results for the intergroup exchange partitioning. It
is seen in Figure 9 that, for all basis sets considered, there is a
cancellation of errors from ∆E[x]-sigma/pi and from ∆E[x]-HF/pi,
whereas the ∆E[x]-HF/sigma has approximately the same value
as the total intergroup exchange ∆E[x]. As in other cases, going
from Pople-type basis sets to correlation consistent basis sets
is more important than merely increasing the basis set size.

The basis set analysis by means of the GPF-EP, albeit limited,
offers some insight into the mathematical mechanisms underpin-
ning the variational procedure of wave function optimization,
which we think might help in the design of more compact and
precise specialized basis sets. It is apparent that the interference
energy, which responds for the formation of the chemical bond,
is the least sensitive among the quantities obtained in the energy
partitioning. The reference and exchange contributions are the
most sensitive, especially those parts involving the σ bond. In
fact, once polarization functions are included, quantities associ-
ated with the π bond are not much affected. As the basis set
quality is increased, the more important adjustments to the wave
function in N2 occur in the σ bond and in the σ/HF intergroup
quantities. If this analysis could be extended to other systems
in the σ-π bond separation approximation, problems concerning
π electrons in planar molecules could, in principle, be inves-
tigated with quite modest basis sets containing polarization
functions. This is now under investigation.

Conclusions

The qualitatively simple picture of the formation of the
chemical bond as a result of the interference effect among one-
electron states is shown to be valid for the N2 molecule. The
results obtained by the GPF-EP method indicate that the
mechanism for bond formation in N2 is equivalent to that
reported by other authors for bonding in H2 and H2

+. More than
that, the method makes it clear that the formation of σ and π
bonds are achieved by the same common mechanism (i.e., the
kinetic energy drop caused by the interference effect), although
the σ bond contributes more to the interference energy.

The results also suggest that, although quasi-classical elec-
trostatic contributions in the N2 molecule can be quite large,
they are necessarily accompanied by large increases in both the
quasi-classical kinetic energy and the intergroup exchange
energy. Hence, the quasi-classical density with the correct
symmetry is unable to predict chemical bonding in the nitrogen
molecule.

There is an important interplay between the σ bond electrons
and the nonbonding electrons, which was revealed by extending
the partitioning to the nonbonding orbitals. Small corrections
to the PES of N2, which arise from the use of a SC(4) wave
function for the nonbonding electrons, are shown to result from
large modifications in the reference energy of the σ bond and
in the interference in the nonbonding electron group, balanced
by an opposite trend in core/nonbonding energy terms.

The effect of the basis set on the GPF-EP was evaluated. It
was shown that by using small basis sets with polarization
functions, it should be possible to investigate the role of
interference in other systems. The reference energy and
intergroup exchange energy, on the other hand, demand larger
basis sets, and the best results are obtained with correlation
consistent sets, although qualitatively correct results should be
obtained even with basis sets of modest size containing
polarization functions. It is noteworthy that the π bond seems
particularly unaffected by basis set size.

Supporting Information Available: We have included
tables comparing all quantities calculated for the two-electron
group schemes describing the N2, obtained from the GPF-EP.
Tables containing the partitioning of the total energy and of
the interference energy are not included, since they already
appear in the article. This material is available free of charge
via the Internet at http://pubs.acs.org.
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